Вирусы, что это такое? Виды, устройство, формы, размножение

Что такое вирусы?

Вирусы — это микроскопические патогены, заражающие клетки живых организмов для самовоспроизводства. Они состоят из одного вида нуклеиновой кислоты (или ДНК или РНК, но не обе вместе), которая защищена оболочкой, содержащей белки, липиды, углеводы или их комбинацию. Размер типичного вируса варьируется от 15 до 350 нм, поэтому его можно увидеть только с помощью электронного микроскопа.

В 1892 году русский ученый Д.И. Ивановский впервые доказал существование ранее неизвестного типа возбудителя болезней, это был вирус мозаичной болезни табака. А в 1898 году Фридрих Лоффлер и Пол Фрош нашли доказательства того, что причиной ящура у домашнего скота была инфекционная частица, которая меньше, чем любая бактерия. Это были первые шаги к изучению природы вирусов, генетических образований, которые лежат где-то в серой зоне между живыми и неживыми состояниями материи. На текущий момент описано около 6 тыс. вирусов, но их существует несколько миллионов.

Строение вирусов

Вне клеток-хозяев вирусы существуют в виде белковой оболочки (капсида), иногда заключенного в белково-липидную мембрану. Капсид обволакивает собой либо ДНК, либо РНК, которая кодирует элементы вируса. Находясь в такой форме вне клетки, вирус метаболически инертен и называется вирионом.

Строение вирусов
Строение вируса

Простая структура, отсутствие органелл и собственного метаболизма позволяет некоторым вирусам кристаллизоваться, т.е. они могут вести себя подобно химическим веществам. С появлением электронных микроскопов было установлено, что их кристаллы состоят из тесно прижатых друг к другу нескольких сотен миллиардов частиц. В одном кристалле вируса полиомиелита столько частиц, что ими можно заразить не по одному разу всех жителей Земли.

Формы вирусов

Вирусы встречаются в трех основных формах. Они бывают:

  1. Сферическими (кубическими или полигидральными). Вирусы герпеса, типулы, полиомы и т.д.
  2. Спиральными (цилиндрическими или стержнеобразными). Вирусы табачной мозаики, гриппа, эпидемического паротита и др.
  3. Сложными. Например, бактериофаги.

Какие бывают формы вирусов?
Сфера, спираль и сложная ассиметричная формы вирусов (ПостНаука/YouTube)

Проникновение вирусов в клетку-хозяина


Капсид в основном защищает нуклеиновую кислоту от действия клеточного нуклеазного фермента. Но некоторые белки капсида способствуют связыванию вируса с поверхностью клеток-хозяев, и работают, как ключики, вставляемые в нужные замочки. Другие поверхностные белки действуют как ферменты, они растворяют поверхностный слой клетки-хозяина и таким образом помогают проникновению нуклеиновой кислоты вируса в клетку-хозяина.

Вирусные популяции используют механизмы и метаболизм клетки-хозяина, чтобы произвести множество своих копий, которые собираются в клетке, пока не «выжмут из нее все соки», а затем выходят из погибшей клетки. Это наиболее частый сценарий, но не единственный.

Жизненный цикл вирусов сильно отличается у разных видов, но существует шесть основных этапов жизненного цикла вирусов:

  1. Прикрепление
  2. Проникновение
  3. Сброс капсида («раздевание»)
  4. Репликация
  5. Сборка
  6. Выход из клетки

Присоединение к клетке-хозяину представляет собой специфическое связывание между вирусными капсидными белками и рецепторами на клеточной поверхности. Эта специфика определяет хозяина вируса.

Проникновение следует за прикреплением: вирионы проникают в клетку-хозяина через рецептор-опосредованный эндоцитоз или слияние мембран. Это часто называют вирусной записью.

Проникновение вирусов в клетку достигается за счет:

  • Образования пор
  • Слияния мембран
  • Ретракции пилуса
  • Выброса
  • Проницаемости
  • Механизмов эндоцитоза

Мембраны растительных и грибковых клеток отличаются от мембран животных клеток. Растения имеют жесткую клеточную стенку из целлюлозы, а грибы – из хитина, поэтому большинство вирусов могут проникать внутрь этих клеток только после травмы («пробивания») клеточной стенки. Бактерии, как и растения, имеют прочные клеточные стенки, которые вирус должен разрушить, чтобы заразить клетку. Учитывая, что бактериальные клеточные стенки намного тоньше стенок растительных клеток из-за их гораздо меньшего размера, некоторые вирусы выработали механизмы ввода своего генома в бактериальную клетку через клеточную стенку, оставляя вирусный капсид снаружи. У прокариот происходит слияние мембран, образование пор через прокалывающее устройство.

Размножение вирусов

После того, как вирусный геном освобождается от капсида, начинается его транскрипция или трансляция. Именно эта стадия вирусной репликации сильно различается между ДНК- и РНК-вирусами и вирусами с противоположной полярностью нуклеиновой кислоты. Этот процесс завершается синтезом новых вирусных белков и генома (точных копий внедрённых).

Как вирусы размножаются?

Механизм репликации зависит от вирусного генома.

  • ДНК-вирусы обычно используют белки и ферменты клетки-хозяина для получения дополнительной ДНК, она транскрибируется в РНК-мессенджер (мРНК), которая затем используется для управления синтезом белка.
  • РНК-вирусы обычно используют ядро ​​РНК в качестве матрицы для синтеза вирусной геномной РНК и мРНК. Вирусная мРНК направляет клетку-хозяина на синтез вирусных ферментов и капсидных белков и сборку новых вирионов. Конечно, есть исключения из этого шаблона. Если клетка-хозяин не обеспечивает ферменты, необходимые для репликации вируса, вирусные гены предоставляют информацию для прямого синтеза отсутствующих белков.

Чтобы преобразовать РНК в ДНК, вирусы должны содержать гены, которые кодируют вирус-специфический фермент обратной транскриптазы. Она транскрибирует матрицу РНК в ДНК. Обратная транскрипция никогда не происходит в неинфицированных клетках. Необходимый фермент, обратная транскриптаза, происходит только от экспрессии вирусных генов в инфицированных клетках.

После того, как процесс репликации «поставлен на поток», готовые копии вируса отпочковываются и заражают другие клетки-хозяина. Другим вариантом выхода вируса из клетки является лизис. В этом случае клетка разрывается, высвобождая копии вируса.

Вироиды

Вироиды – это наименьшие из известных патогенов, они представляют собой голые круглые одноцепочечные молекулы РНК, которые не кодируют белок капсида, а реплицируются автономно при попадании в клетку растения-хозяина. Первый вироид был открыт в 1971 году, и он вызывает болезнь картофеля («веретенообразность» клубней). С тех пор было обнаружено 29 других вироидов длиной от 120 до 475 нуклеотидов.

Вироиды заражают только растения. Одни вызывают экономически важные заболевания сельскохозяйственных культур, в то время как другие являются доброкачественными. Двумя примерами экономически важных вироидов являются кокосный cadang-cadang (он вызывает массовую гибель кокосовых пальм) и вироид рубцовой кожицы яблок, который безнадежно портит товарный вид яблок.

30 известных вироидов были классифицированы в две семьи.

  • Члены семейства Pospiviroidae, названные по имени вироида клубневого веретена картофеля, имеют палочковидную вторичную структуру с небольшими одноцепочечными областями, имеет центральную консервативную область, и реплицируются в ядре клетки.
  • Avsunviroidae, названный в честь вироида авокадо, имеет как палочковидную, так и разветвленную области, но не имеет центральной консервативной области и реплицируется в хлоропластах растительной клетки.

В отличие от вирусов, которые являются паразитами механизма трансляции хозяина, вироиды являются паразитами клеточных транскрипционных белков.

Бактериофаги

Бактериофаги являются вирусами, которые заражают и используют для своего размножения бактерии. Эти вирусы были независимо обнаружены Фредериком У. Твортом в Великобритании (1915 г.) и Феликсом д’Эрелем во Франции (1917 г.). D’Hérelle ввел термин бактериофаг, означающий «пожиратель бактерий», чтобы описать бактерицидную способность открытого им инфекционного агента.

Что такое бактериофаг?

Характеристика бактериофагов

Существуют тысячи разновидностей фагов, каждый из которых может заразить только один тип или несколько близких типов бактерий или архей. Фаги классифицируются по ряду семейств вирусов; например:

  • Inoviridae
  • Microviridae
  • Rudiviridae
  • Tectiviridae и т.д.

Как и все вирусы, фаги являются простыми организмами, которые состоят из ядра генетического материала (нуклеиновой кислоты), окруженного капсидом белка. Нуклеиновая кислота может представлять собой либо ДНК, либо РНК, и может быть двухцепочечной или одноцепочечной.

Существует три основных структурных формы фага:

  1. Икосаэдрическая (20-сторонняя) головка с хвостом
  2. Икосаэдрическая головка без хвоста
  3. Нитевидная форма

Вирулентные и умеренные фаги

Во время заражения фаг прикрепляется к бактерии и вставляет в нее свой генетический материал. После этого фаг обычно следует одному из двух жизненных циклов: литическому (вирулентному) или лизогенному (умеренному).

Литические, или вирулентные, фаги захватывают механизм клетки, чтобы скопировать компоненты фага. Затем они разрушают или лизируют клетку, высвобождая новые частицы фага.

Лизогенные, или умеренные, фаги включают свою нуклеиновую кислоту в хромосому клетки-хозяина и реплицируются с ней как единое целое, не разрушая клетку. При определенных условиях лизогенные фаги могут индуцироваться в соответствии с литическим циклом.

Существуют и другие жизненные циклы, в т.ч. псевдолизогенез и хроническая инфекция. При псевдолизогении бактериофаг проникает в клетку, но не использует механизм репликации клеток и не интегрируется в геном хозяина, просто как бы прячется внутри бактерии, не нанося ей никакого вреда. Псевдолизогенез возникает, когда клетка-хозяин сталкивается с неблагоприятными условиями роста и, по-видимому, играет важную роль в выживании фага, обеспечивая сохранение генома фага до тех пор, пока условия роста хозяина снова не станут благоприятными.

При хронической инфекции новые фаговые частицы образуются непрерывно и длительно, но без явного уничтожения клеток.

Фаговая терапия

Вскоре после открытия фаги начали использовать для лечения бактериальных заболеваний человека, таких как бубонная чума и холера. Но фаговая терапия тогда не была успешной, и после открытия антибиотиков в 1940-х годах она была практически заброшена. Однако с появлением устойчивых к антибиотикам бактерий терапевтическому потенциалу фагов уделяется все больше внимания.

Наше время с антибиотиками заканчивается. В 2016 году женщина в штате Невада умерла от бактериальной инфекции, вызванной Klebsiella pneumoniae, которая была устойчивой ко всем известным антибиотикам. Бактерии, устойчивые к колистину, антибиотику последней инстанции, были обнаружены на свинофермах в Китае. В настоящее время бактерии приспосабливаются к антибиотикам быстрее, чем когда-либо.

Тем временем ученым требуется десять или более лет, чтобы разработать новый антибиотик и получить разрешение на его применение. В итоге мы проигрываем бактериям в этой «гонке вооружений». Человечеству срочно нужен альтернативный метод борьбы с бактериальными инфекциями. Одним из самых перспективных методов уничтожения бактерий является использование бактериофагов: вирусов, которые заражают и убивают бактерии.



Читайте также:
Franky Zapata пересек Ла-Манш

Фрэнки Запата успешно пересекает Ла-Манш на своей реактивной доске Flyboard Air

Пересечение 35,4 км заняло у Запаты около 22 минут, при этом скорость его полета превышала 160 км в час.
Технологии будущего

15 идей, которые могут изменить мир

Представляем вам список из 15 идей, которые, вероятно, мы увидим реализованными в ближайшем будущем.
Глауконит как удобрение

Этот минерал может стать заменой калийных удобрений

Поскольку мир пытается найти более экологичные альтернативы пестицидам, у команды российских ученых появилась интересная идея.
Хирургический клей

«Сварка» стволовых клеток для хирургического клея следующего поколения

Ученые из Бристольского университета изобрели новую технологию, которая может привести к разработке нового поколения хирургических клеев.
Мутагенность трав

Ведьмачье средство. Что говорит наука о мутагенности «целебных» трав

Принято считать, что травяные лекарственные препараты исключительно полезны и не способны причинить вред. Но это не более, чем заблуждение.

Комментарии 10

  • Покажите ножницы которыми вирусы разрезают молекулу РНК что бы встроиться для мутации.Может что нибудь придумаете другое.К примеру деление цепочка аминокислот получив энергию из вне как одноименные заряды распадается на две. К каждой соединятся только те какие были ранее (другие проскочат мимо),казалось бы копии,но внутренняя энергия разная(уменьшается увеличивается) поэтому распад и создание. Вся химия углерода на этом построена 1000 орган соединений создает у других хим элементов этого свойства нет. Иммунная система делает накладку(интерференция)с помощью энергии интерферонов пытаясь разрушить цепочку РНК вируса.Надо помочь организму но не вакциной(вирус быстро мутирует)

    • Алексей! Я полный профан в этой области! И если вы сможете, ответьте мне на вопрос: вирусы состоят из молекул?Ещё раз говорю: если с Вашей точки зрения мой вопрос дурацкий, посмейтесь и,если не трудно,ответьте доступным языком. Спасибо!

      • Наталья, не знаю, ответил ли вам Алексей, поэтому хочу ответить. Я тоже не шибко разбираюсь в вирусах, но смотрите: белковая оболочка вируса — то есть она состоит из МОЛЕКУЛ белка. РНК или ДНК — это тоже молекулы. Делаем вывод, что вирус состоит из МОЛЕКУЛ.

  • Любая материя в мире состоит из молекул.Разница в составе молекул того или иного вещества, как минерального так и органического.

  • Вирусы являются переносчиками генов, собственно они помогают в эволюции человеческого, и не только, вида. Благодаря этим не живым созданиям(в голове не особо укладывается) мы имеем возможность мутировать, путём горизонтального переноса генов. Так что вирусы не так плохи, порой они нас убивают, ну тут такая же тема как с раком, слишком много мутаций и делений. Никто ведь не знает какой ген нам может передать вирус и когда это произойдёт, в бесконечном количестве возможностей, вирус может передать и полезный нам ген. Своего рода это апгрейд, очень случайный и опасный апгрейд.

    • Если не ошибаюсь, CRISPR-Cas9 метод редактирования генома происходить при помощи вируса, естественно специального вируса для этих целей. Если я не прав, поправьте меня.

  • Интересно почитать что из себя представляют вирусы, особенно когда в мире такое твориться, хоть немного стал понимать их природу, а то раньше вирусы для меня были чем-то иллюзорным, магией))

  • Как вся эта шумиха вокруг вируса задолбала, на каждом шагу: ковид, ковид, боже мой, когда можно будет спокойно пожить?

  • В мире огромное количество вирусов которые очень смертельны, заразны и против них нет ни лекарств, ни вакцины. Если бы страны уделяли больше внимания на финансирования медицины, а не вкидывали огромное количество бабла в вооружение, то может уже давным давно победили бы и рак, и ВИЧ, а также другие смертельные заразы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *